If it's not what You are looking for type in the equation solver your own equation and let us solve it.
32d^2+39d=0
a = 32; b = 39; c = 0;
Δ = b2-4ac
Δ = 392-4·32·0
Δ = 1521
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1521}=39$$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(39)-39}{2*32}=\frac{-78}{64} =-1+7/32 $$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(39)+39}{2*32}=\frac{0}{64} =0 $
| (-6x+103)+14=6x-15 | | 8+5x=14+2x | | 5x-5=7x-5 | | (11m)/(4)-7=15 | | 5n-75=125 | | 15(x+4)=125 | | x+(5000+2x)=15000 | | 3x-9+6x=180 | | 3x-5x-7=-2x+2-7 | | 1-7x=-8x+4 | | b+3/16=5/16 | | 3x-5x-7=-2x+2x-7 | | 4x^2=-x-14 | | -3+8x=-3(1-3x) | | -1-3(2x-2)=-6(x-2) | | 8x+4=60; | | -13n+10=-8n-15 | | 2x+8+x-4=180 | | 3/17=x/17 | | -12h=4 | | 28-(3x+4)=2(x+6-x | | -3x+x=-8 | | 4x-5x+8=2 | | 12r−8r=20 | | -12f=-14f-18 | | (4)/(3)|3w-6|=16 | | 5r-2+9r+8=180 | | 9-x=1-(x=14) | | P=7.75x+15 | | 9+-3x=18 | | 300=1500(1/2)^(x/9.7) | | 2^2x+1-9^2x=-4 |